Vamos lá ver se conseguimos deduzir uma formula mais amigável! \begin{eqnarray*} {c_{0}}&{=}&{a_0}\\ {c_{1}}&{=}&{a_0 + \frc{1}{a_1} = \frc{a_1a_0+1}{a_1}}\\ {c_{2}}&{=}&{a_0 + \frc{1}{a_1 + \frc{1}{a_2}} = \frc{a_2(a_1a_0+1)+a_0}{a_2a_1+a_0}}\\ {c_{3}}&{=}&{\cdots = \frc{a_3\left(a_2(a_1a_0+1)+a_0\right)+a_1a_0+1}{a_3(a_2a_1+1)+a_1}} \end{eqnarray*} Portanto, podemos dizer que todos os $c_n$ calculados são fracções do tipo $c_n=\frc{p_n}{q_n}$ onde
\[ \left\{ {\begin{array}{l} {p_0 = a_0 } \\ {q_0 = 1} \end{array}} \right. \] \[ \left\{ {\begin{array}{l} {p_1 = a_1 a_0 + 1} \\ {q_1 = a_1 } \end{array}} \right. \] \[ \left\{ {\begin{array}{l} {p_2 = a_2 \left( {a_1 a_0 + 1} \right) + a_0 } \\ {q_2 = a_2 a_1 + 1} \end{array}} \right. \] \[ \left\{ {\begin{array}{l} {p_3 = a_3 \left( {a_2 \left( {a_1 a_0 + 1} \right) + a_0 } \right) + a_1 a_0 + 1} \\ {q_3 = a_3 \left( {a_2 a_1 + 1} \right) + a_1 } \end{array}} \right. \] Um olhar mais atento permite reescrever \[ \left\{ {\begin{array}{l} {p_0 = a_0 } \\ {q_0 = 1} \end{array}} \right. \] \[ \left\{ {\begin{array}{l} {p_1 = a_1 p_0 + 1} \\ {q_1 = a_1 } \end{array}} \right. \] \[ \left\{ {\begin{array}{l} {p_2 = a_2 p_1 + p_0 } \\ {q_2 = a_2 q_1 + q_0 } \end{array}} \right. \] \[ \left\{ {\begin{array}{l} {p_3 = a_3 p_2 + p_1 } \\ {q_3 = a_3 q_2 + q_1 } \end{array}} \right. \] E parece que se definirmos recursivamente \[ \left\{ {\begin{array}{l} {p_{n + 1} = a_{n + 1} p_n + p_{n - 1} } \\ {q_{n + 1} = a_{n + 1} q_n + q_{n - 1} } \end{array}} \right. \] Podemos ter uma sucessão de recorrência que permite calcular as fracções $c_n$ mais facilmente. Para que as fórmulas se mantenham válidas, pelo menos até $n=3$ definimos $p_{-1}=1$ , $p_{-2}=0$ $q_{-1}=0$ e $q_{-2}=1$.
Vamos ver que de facto isto funciona para todo o $n$ natural (comecem os naturais onde vos apetecer). Vou enunciar como teorema, e provar, recorrendo ao método de indução matemática.
Sejam $r=\left[a_0;a_1,a_2,\dots,a_n,\dots\right]$. \[ \left\{ {\begin{array}{l} {p_{-2} = 0} \\ {p_{-1} = 1} \\ {p_{n} = a_{n} p_{n-1} + p_{n - 2} \forall n\in \N_0} \end{array}} \right. \] e \[ \left\{ {\begin{array}{l} {q_{-2} = 1} \\ {q_{-1} = 0} \\ {q_{n} = a_{n} q_{n-1} + q_{n - 2} \forall n\in \N_0} \end{array}} \right. \] então, $$c_n=[a_0;a_1,\dots,a_n]=a_0+\frc{1}{a_1+\frc{1}{\frc{\cdots}{a_{n-1}+\frc{1}{a_n}}}}=\frc{p_n}{q_n} $$
Para $n=0$ temos \[p_0=a_0p_{-1}+p_{-2}=a_0\times 1+ 0=a_0\] \[q_0=a_0q_{-1}+q_{-2}=a_0\times 0+ 1=1\] E então \[\frac{p_0}{q_0}=\frac{a_0}{1}=c_0\] portanto é verdade!
Hipótese de indução: $$c_n=[a_0;a_1,\dots,a_n]=a_0+\frc{1}{a_1+\frc{1}{\frc{\cdots}{a_{n-1}+\frc{1}{a_n}}}}=\frc{p_n}{q_n} $$ Tese: $$c_{n+1}=[a_0;a_1,\dots,a_n,a_{n+1}]=a_0+\frc{1}{a_1+\frc{1}{\frc{\cdots}{a_{n-1}+\frc{1}{a_n+\frc{1}{a_{n+1}}}}}}=\frc{p_{n+1}}{q_{n+1}} $$ Para provar a tese começamos por notar que para calcular $c_{n+1}$ só temos de substituir $a_n$ por $a_n+\frc{1}{a_{n+1}}$ na expressão de $c_n$. Assim sendo, se $$c_n=\frc{p_n}{q_n}=\frc{a_{n} p_{n-1} + p_{n - 2}}{a_{n} q_{n-1} + q_{n - 2}}$$ então \begin{eqnarray*} {c_{n+1}}&{=}&{\frc{\left(a_{n}+\frc{1}{a_{n+1}}\right) p_{n-1} + p_{n - 2}}{\left(a_{n}+\frc{1}{a_{n+1}}\right) q_{n-1} + q_{n - 2}}}\\ {}&{=}&{\frc{\frc{{\left( {a_n a_{n + 1} + 1} \right)p_{n - 1} + a_{n + 1} p_{n - 2} }}{{a_{n + 1} }}}{\frc{{\left( {a_n a_{n + 1} + 1} \right)q_{n - 1} + a_{n + 1} q_{n - 2} }}{{a_{n + 1} }}}}\\ {}&{=}&{\frc{{\left( {a_n a_{n + 1} + 1} \right)p_{n - 1} + a_{n + 1} p_{n - 2} }}{{\left( {a_n a_{n + 1} + 1} \right)q_{n - 1} + a_{n + 1} q_{n - 2} }}} \end{eqnarray*} Note-se que de $p_{n} = a_{n} p_{n-1} + p_{n - 2} $ se deduz que $p_{n-2} =p_{n} - a_{n} p_{n-1} $ e também de $q_{n} = a_{n} q_{n-1} + q_{n - 2} $ se deduz que $q_{n-2} =q_{n} - a_{n} q_{n-1} $
Isso conduz-nos a: \begin{eqnarray*} {\frc{{\left( {a_n a_{n + 1} + 1} \right)p_{n - 1} + a_{n + 1} p_{n - 2} }}{{\left( {a_n a_{n + 1} + 1} \right)q_{n - 1} + a_{n + 1} q_{n - 2} }}}&{=}&{\frc{{\left( {a_n a_{n + 1} + 1} \right)p_{n - 1} + a_{n + 1} \left( {p_n - a_n p_{n - 1} } \right)}}{{\left( {a_n a_{n + 1} + 1} \right)q_{n - 1} + a_{n + 1} \left( {q_n - a_n q_{n - 1} } \right)}}}\\ {}&{=}&{\frc{{a_n a_{n + 1} p_{n - 1} + p_{n - 1} + a_{n + 1} p_n - a_n a_{n + 1} p_{n - 1} }}{{a_n a_{n + 1} q_{n - 1} + q_{n - 1} + a_{n + 1} q_n - a_n a_{n + 1} q_{n - 1} }}}\\ {}&{=}&{\frac{{p_{n - 1} + a_{n + 1} p_n }}{{q_{n - 1} + a_{n + 1} q_n }}}\\ {}&{=}&{\frac{{a_{n + 1} p_n+p_{n - 1} }}{{ a_{n + 1} q_n+q_{n - 1}}}}\\ {}&{=}&{\frc{p_{n+1}}{q_{n+1}}} \end{eqnarray*} O que termina a demonstração.
Estas fórmulas simplificam bastante o cálculo dos $c_n$.
Na versão da cadeira de Teoria dos Números que eu tive, o professor deu-nos estas fórmulas sem dedução, a que estou a vos apresentar foi a que fiz, mas reencontrei anos mais tarde, num livro da editora Mir. Assim que o reencontrar, ponho a referência.
Sim, a minha versão da dedução também foi feita numa mesa de café.
Torna-se tão simples calcular os $c_n$ que se pode construir uma tabela auxiliar.
$n$ | $a_n$ | $q_n$ | $p_n$ | $c_n$ |
---|---|---|---|---|
$-2$ | $-$ | $1$ | $0$ | $-$ |
$-1$ | $-$ | $0$ | $1$ | $-$ |
$0$ | $a_0$ | $1$ | $a_0$ | $a_0$ |
$1$ | $a_1$ | $a_1$ | $a_1p_0+1$ | $\frc{p_1}{q_1}$ |
$n$ | $a_n$ | $q_n$ | $p_n$ | $c_n$ |
---|---|---|---|---|
$-2$ | $-$ | $1$ | $0$ | $-$ |
$-1$ | $-$ | $0$ | $1$ | $-$ |
$0$ | $3$ | $1$ | $3$ | $3$ |
$1$ | $7$ | $7$ | $22$ | $\frc{22}{7}$ |
$2$ | $15$ | $106$ | $333$ | $\frc{333}{106}$ |
$3$ | $1$ | $113$ | $355$ | $\frc{355}{113}$ |
$4$ | $292$ | $33102$ | $103993$ | $\frc{103993}{33102}$ |
$5$ | $1$ | $33215$ | $104348$ | $\frc{104348}{33215}$ |
$6$ | $1$ | $66317$ | $208341$ | $\frc{208341}{66317}$ |
$7$ | $1$ | $99532$ | $312689$ | $\frc{312689}{99532}$ |
$8$ | $2$ | $265381$ | $833719$ | $\frc{833719}{265381}$ |
$9$ | $1$ | $364913$ | $1146408$ | $\frc{1146408}{364913}$ |
$10$ | $3$ | $1360120$ | $4272943$ | $\frc{4272943}{1360120}$ |
O leitor mais atento deverá notar que acabei de identificar a sucessão de há dias. $3$,$\frc{22}{7}$,$\frc{333}{106}$,$\frc{355}{113}$,$\frc{103993}{33102}$,$\frc{104348}{33215}$,$\frc{208341}{66317}$,$\frc{312689}{99532}$,$\frc{833719}{265381}$,$\frc{1146408}{364913}$,$\frc{4272943}{1360120}$ são os primeiros termos da sucessão dos convergentes de $\pi$.
Note que cada uma delas dá um valor aproximado de $\pi$.
Aproveito e vou introduzir uma nova definição:
Chamarei "fracção reduzida" ou abreviadamente "reduzida" a cada valor de $c_n$ quando escrito na forma de fracção irredutível.
Devo continuar num próximo post.
PS:
Num dos 3 dias que levei a escrever este texto, implementei-o (directamente) na minha TI84plus CE-T, em Basic.
Clicando no botão abaixo, pode ver fotos do programa a correr.
Sem comentários:
Enviar um comentário